

Building Mobile Game
Solvers

Build Robots And Develop Algorithms Which Can
Automatically Solve Mobile Games

SURYA PENMETSA1

SUDHEESH SINGANAMALLA2

April 15, 2016

1www.psurya.com
2www.sudheesh.info

www.psurya.com
www.sudheesh.info

ii

.

iii

Credits

This book is written by Surya Penmetsa and Sudheesh Sin-
ganamalla with help from the following amazing members
of the Game Automators community.

• Piyush Kashyap

• Chandra S S Vamsi

• Nishi

• Karthik Shathiri

• Rajmani Arya

• Naveen Indala

• Piyush Agarwal

The book has been reviewed by:

• Nikhilendra Gudisa

• Sandeep Nadella

• Sharan Erukulla

We’d like to thank the following mighty people have as-
sisted us in making all the work we do open source and free.

• Ramesh Akula

• Raja Poranki

• Priyanka Namburi

• Sathish Visanagiri

iv

We would like to thank the Innovation Garage1 and The
Lakshya Foundation2 for giving valuable suggestions all along
and providing us with a great environment to work.

We’d also like to thank the other contributors: Aarti Barai,
Sriram Kovela, Bharath Kumar, Vinay Kant, Aman Bhar-
gava, Nisha Jacob, Satya Kesav, Anirudh Deshpande, Milind
Sheth, Sreetam Das, Shashank Kasala, Milan Chatterjee, Chetan
Rathore, Surendra Gurjar, Shubhi Saxena, Devendra Patil,
Shivani Shukla, Spandan Pandey, Aroma Rodrigues, Rajat
Soni and Priyansh Jain.

1https://www.facebook.com/TheInnovationGarage/
2http://www.thelakshyafoundation.org/

https://www.facebook.com/TheInnovationGarage/
http://www.thelakshyafoundation.org/

Contents

1 Overview 7
1.1 Setting up adb tool 8

1.1.1 Setup . 8
1.1.2 Basic Commands 11

1.2 Using Image Processing 12
1.2.1 Approach 12
1.2.2 Advantages of this approach 12
1.2.3 Disadvantages of this approach 13
1.2.4 Games which can be solved 13

1.3 Using Electronics 13
1.3.1 Approach 13
1.3.2 Advantages of this approach 14
1.3.3 Disadvantages of this approach 14
1.3.4 Games which can be solved 15

1.4 Using Electronics and Image Processing 15
1.4.1 Approach 15
1.4.2 Advantages of this approach 16
1.4.3 Disadvantages of this approach 16
1.4.4 Games which can be solved 16

2 Image Processing 17
2.1 What is an Image? 17

2.1.1 Basics . 18
2.1.2 Image Resolution 19

2.2 Types of Images 19
2.2.1 Binary Image 19

v

vi CONTENTS

2.2.2 Grayscale Image 21
2.2.3 RGB image 21

2.3 Image Processing Techniques 23
2.3.1 Basic Commands 24
2.3.2 Image Thresholding 30
2.3.3 Image Enhancement 33
2.3.4 Region Properties Extraction 38
2.3.5 Debugging in MATLAB 39

3 Electronics 41
3.1 Basic Electronics 41

3.1.1 Voltage Divider Circuit 42
3.2 Arduino . 43

3.2.1 Hardware 44
3.2.2 Software 44

3.3 Sensors for Automating Games 45
3.3.1 Light Dependent Resistor(LDR) 46
3.3.2 RGB Sensors 51

3.4 Touch Simulation 51
3.4.1 Mechanical 51
3.4.2 Using Relay 52
3.4.3 Using Transistor 56

4 Solving Games 57
4.1 3D Bowling . 57
4.2 Find the differences 61
4.3 Sudoku . 64
4.4 Unblock Me . 69
4.5 Bang . 73
4.6 Piano Tiles . 77
4.7 Stick Hero . 81

5 Contributing 85
5.1 Setting up to contribute 85
5.2 Making a contribution 85

Preface

Making learning fun is extremely important. Many of us
would have played video games when we were young, and
what kept us glued and excited was the desire to make a
high score. How awesome would it be to build your own
robots and algorithms that play these games? How exciting
would it be to watch your algorithm making it through the
level that you found very hard?

This book is an attempt in that direction. It will introduce
you on how to build systems and robots that can play mobile
games. This approach will help you learn concepts of algo-
rithms, electronics, image processing and machine learning;
and have a lot of fun at the same time.

Background

I’m Surya Penmetsa, an ECE graduate from NIT Warangal
class of 2015. I started working on such robots and algo-
rithms during my final year at college. They could solve mo-
bile games using concepts of electronics, image processing
and machine learning. We used electronic sensors or image
processing to sense what’s on the screen; and then simulated
touch physically or virtually at the appropriate locations.

I uploaded a video3 of one of the robots that could play
the game Piano Tiles on YouTube and it went viral. More
than 200,000 people watched it. On popular demand, I also

3https://youtu.be/2TJ7itil1cc

1

https://youtu.be/2TJ7itil1cc

2 CONTENTS

uploaded a tutorial video4 for the same, and it again got over
200,000 views. This shows the excitement and interest of
people to solve games in an innovative manner.

I decided it was time for me to take the work to the next
level. With the help of The Lakshya Foundation and Innova-
tion Garage, I teamed up with students from NIT Warangal
during the winter vacation5 in December 2015, and Hackathon
5.0 in January 2016 to solve more games.

Most students had prior experience with electronic cir-
cuits, but very few knew image processing. I guided them
through short lectures and provided them with online re-
sources where they could learn further. They worked very
hard, and grasped all required concepts very quickly. To-
gether, we wrote algorithms for various games which beat
human-level-performance.

We open-sourced all of the projects so that people around
the world can replicate and build upon it. We also made
video demonstrations for all projects and uploaded them on
YouTube.

This book Building Mobile Game Solvers is a result of
our work. I hope you learn a lot while reading the book and
have a lot of fun.

We are open sourcing this book so that it can get better in
quality by contributors across the world. We invite you, the
reader, to be a contributor to the book to have more projects.
The details on how to contribute are at the end of the book.

Bolsters Interest towards AI

Artificial Intelligence (AI) has been one of the fastest grow-
ing fields in the recent past. The book can also bolster the
interest of the readers in this field. Once people learn build-
ing machines for game playing, they can expand into other
areas in AI such as- natural language processing, robotics,

4https://youtu.be/8hlQ0MiowN8
5https://youtu.be/iDJW98c7uhg

https://youtu.be/8hlQ0MiowN8
https://youtu.be/iDJW98c7uhg

CONTENTS 3

computer vision, stock trading, medical diagnosis, etc.

Prerequisites

So what should you know in order to get started? This book
has been carefully designed to help readers with or without
experience in electronics and image processing. However,
prior programming experience is recommended.

We covered concepts that are only relevant to solving
mobile games in this book. In case you want to learn more,
we have provided links at relevant places so that you can
learn more.

Note

This book can be used to learn how fun electronics, image
processing and machine learning are, but it cannot be inde-
pendently used as a guide for any of these areas.

What this book covers

The book covers the following in each of the chapters.
Chapter 1, Introduction, covers the overview of each ap-

proach that we are going to use to solve the games in this
book.

Chapter 2, Image Processing, explains what an image is ac-
tually made up of and how it can be analysed using differ-
ent methods. It also teaches MATLAB commands that can
be used for image processing.

Chapter 3, Electronics, introduces the sensors that can be
used to sense what’s on the screen and the various ways to
simulate touch. It also talks about how a microcontroller can
be used in to program the sensors and touch simulation.

Chapter 4, Solving Games, demonstrates how the concepts
and methods of solving that we have learnt earlier can be
used to solve specific games.

4 CONTENTS

Conventions

In this book, you will find different formats of text that spec-
ify different types of information. For example, the para-
graph text you are reading right now depicts normal text in
the book. The bold in a bigger font size depicts the chapter
names, headings or subheadings.

Codes are represented in blocks as follows-
Arduino code is represented this way.

1 void setup ()
{

3 // i n i t i a l i z e s e r i a l communications a t 9600 bps
S e r i a l . begin (9 6 0 0) ;

5 }

Listing 1: Sample Arduino code

MATLAB code is represented this way.

1 % Reading an image
a = imread (’ input . jpg ’) ;

3 % Displaying the image
imshow (a) ;

Listing 2: Sample MATLAB code

Downloading the codes used in the book

All the codes that have been used in the book can be found
at this link6.

Downloading color images in the book

You can find the color images that have been used in the
book at the following link7.

6https://github.com/GameAutomators
7https://github.com/GameAutomators/eBook-Source/

tree/master/Images

https://github.com/GameAutomators
https://github.com/GameAutomators/eBook-Source/tree/master/Images
https://github.com/GameAutomators/eBook-Source/tree/master/Images

CONTENTS 5

Reader feeback

We are always looking to improve the quality of the book.
The feedback from the readers of our book is extremely im-
portant for us. Let us know what you think about the book
by shooting an email to p.surya1994@gmail.com with the
subject Reader Feedback: Game Automators. We promise to
read each and every one of your emails.

If you find any mistake in the book text or the code- we
would be grateful if you could report this on our github
page8.

8https://github.com/GameAutomators/eBook-Source/
issues

mailto:p.surya1994@gmail.com
https://github.com/GameAutomators/eBook-Source/issues
https://github.com/GameAutomators/eBook-Source/issues

6 CONTENTS

1

Overview

The number of mobile devices has increased at a huge rate
in the past decade. There are almost as many devices as
there are people in the world. Phones have become an in-
tegral part of the lives of each one of us by helping us make
phone calls, navigate using GPS, get high quality photos,
play games, send text messages and many more. Further,
with drastic improvements in the computational capability
of the phones, the mobile gaming is a booming industry. In
this chapter, we will learn different approaches to automate
the mobile games.

Here are some of the games that we will learn to solve in
this book: Find the Differences1, Tic Tac Toe2, Piano Tiles3,
Stick Hero4, Flow Free5 and Unblock Me6. Feel free to down-

1https://play.google.com/store/apps/details?id=com.
ivanovandapps.ftdiaa3

2https://play.google.com/store/apps/details?id=com.
pinkpointer.tictactoe

3https://play.google.com/store/apps/details?id=com.
umonistudio.tile

4https://play.google.com/store/apps/details?id=com.
ketchapp.stickhero

5https://play.google.com/store/apps/details?id=com.
bigduckgames.flow

6https://play.google.com/store/apps/details?id=com.
kiragames.unblockmefree

7

https://play.google.com/store/apps/details?id=com.ivanovandapps.ftdiaa3
https://play.google.com/store/apps/details?id=com.ivanovandapps.ftdiaa3
https://play.google.com/store/apps/details?id=com.pinkpointer.tictactoe
https://play.google.com/store/apps/details?id=com.pinkpointer.tictactoe
https://play.google.com/store/apps/details?id=com.umonistudio.tile
https://play.google.com/store/apps/details?id=com.umonistudio.tile
https://play.google.com/store/apps/details?id=com.ketchapp.stickhero
https://play.google.com/store/apps/details?id=com.ketchapp.stickhero
https://play.google.com/store/apps/details?id=com.bigduckgames.flow
https://play.google.com/store/apps/details?id=com.bigduckgames.flow
https://play.google.com/store/apps/details?id=com.kiragames.unblockmefree
https://play.google.com/store/apps/details?id=com.kiragames.unblockmefree

8 1. OVERVIEW

load these games and try them out on your phone.
We will learn three approaches in which we can auto-

mate the games. Do remember that these are just a few of
the many approaches that you can use.

• Using Image Processing

• Using Electronics

• Using Image Processing and Electronics

Let us learn how to setup Android Debug Bridge (adb)
tool which is used for communication between laptop and
phone, before learning how each of the above mentioned ap-
proach works.

1.1 Setting up adb tool

Android Debug Bridge (adb) is a command line tool that al-
lows the computer to communicate with attached Android
devices. We will be using adb tool to capture screenshots
of the mobile screen, simulate virtual touches and virtual
swipes.

1.1.1 Setup

These are the steps that you have to follow to setup adb tool.

Step 1: Setting up adb tool

We will need a software called adb fastboot in order to be
able to use the adb tool. Download the files in the provided
link7.

This will create a new file in your main hard drive (which
is C: in most cases) named adb. We have to add this to

7http://forum.xda-developers.com/showthread.php?p=
48915118

http://forum.xda-developers.com/showthread.php?p=48915118
http://forum.xda-developers.com/showthread.php?p=48915118

1.1. SETTING UP ADB TOOL 9

Figure 1.1: Screeshot while installing ADB

the environment path so that adb.exe can be used from any-
where in your computer.

Go to Control Panel -> System -> Advanced System Set-
tings and a new window pop up. Go to the Advanced tab
in this window and click Environment Variables. In the Sys-
tem Variables (the bottom section), choose the variable path
and click edit to change it’s value. At the end of the value,
add the following. This will add the adb folder to your path
that can be accessed from anywhere.

;C:\ adb\

Step 2: Installing device drivers

You can find the drivers from Universal drivers8 or Android
developers website9.

Open the Device Manager (click Start, type Device Man-
ager, and press Enter), locate your device, right-click it and
select Properties. You may see a yellow exclamation mark
next to the device if its driver isn’t installed properly. You

8http://adbdriver.com/downloads/
9http://developer.android.com/tools/extras/oem-usb.

html#InstallingDriver

http://developer.android.com/tools/extras/oem-usb.html#InstallingDriver
http://developer.android.com/tools/extras/oem-usb.html#InstallingDriver

10 1. OVERVIEW

might also have to force windows to use the installed drivers
for your phone.

Step 3: Enable USB debugging

To use adb with your Android device, you have to enable
USB debugging.

You will find this in the developer options menu inside
settings. If the developer options menu is not available, go
into about phone menu in settings and tap the build number
seven times to enable developer options menu. Also, make
sure that you accept RSA fingerprint message shown in the
device when its connected for the first time.

Step 4: Testing

To test whether adb is working properly, connect your An-
droid device to your computer using USB cable and run the
following command in the command prompt. This should
list the devices.

1 adb devices

Also run the following command on MATLAB

1 system (’ adb devices ’)

The output of both the commands should look similar to
this if your Android device is connected properly and de-
tected.

1 L i s t of devices at tached
T038509BHC device

If it says, command not found, it means adb tool is not
setup properly, check if you complete step 1 correctly. If

1.1. SETTING UP ADB TOOL 11

your device is connected but nothing appears in the list,
check if your device drivers are installed properly.

It is also possible to use adb tool over WiFi10.

1.1.2 Basic Commands

Here are some commands that can be used with adb tool.
To take a screenshot of the device connected and store it

on the sd card with the name ‘screen.png‘.
adb s h e l l screencap −p /sdcard/screen . png

To copy the image stored previously on the sdcard on
your computer’s working directory.

1 adb pul l /sdcard/screen . png

To tap on the screen at coordinates (x,y).
1 adb s h e l l input tap x y

To swipe the screen from coordinates (x1, y1) to coordi-
nates (x2,y2) with a delay of w milliseconds.

1 adb s h e l l input swipe x1 y1 x2 y2 w

To remove screenshot that has been stored.
1 adb s h e l l rm −f /sdcard/ t e s t . t x t

That’s all you need to know about adb tool. Next, let us
cover each of the approaches in detail.

Remember, adb tool can only be used for Android phones.
Instruments can be used to accomplish the same tasks that
adb tool does in iOS.

10http://developer.android.com/tools/help/adb.html#
wireless

 http://developer.android.com/tools/help/adb.html#wireless
 http://developer.android.com/tools/help/adb.html#wireless

12 1. OVERVIEW

Figure 1.2: The image depicts the block diagram of the ap-
proach using adb tool and image processing for solving the
games

1.2 Using Image Processing

In this approach, we use image processing and adb tool to
automate the games. This has been illustrated in Fig. 1.2.

1.2.1 Approach

We use adb tool to take a screenshot of the phone screen and
send over to the computer. Next, we use a set of image pro-
cessing techniques to extract relevant features in the image.
Depending on the features, we decide the appropriate action
(touch or swipe) that must be taken and do that virtually us-
ing adb commands.

We can run the above steps in a loop to automate a game
that needs repetition or has multiple levels.

1.2.2 Advantages of this approach

• We can get direct screenshots of the phone screen; hence
the pixel values are reflected perfectly. So no prepro-
cessing is required for the image.

1.3. USING ELECTRONICS 13

• Since we can simulate precise touches and swipes.

• Complex algorithms can be implemented easily in case
you are using MATLAB.

• Everything happening on the screen is visible to us un-
like in the case of electronic circuits where the screen
could be covered with the sensors or touch simulation
circuitry.

1.2.3 Disadvantages of this approach

• The transfer of the screenshots to laptop, and simulat-
ing the touch takes about half a second. This is very
slow if we are working on real time games that need
quick response.

1.2.4 Games which can be solved

The Android games ’Stick Hero’ and ’Find the Difference’
can be solved using this approach because the games are not
time bounded and tap on the screen is good enough to play
these games.

1.3 Using Electronics

This is a way to automate the mobile games by using clever
electronic circuitry placed on top of your phone. This has
been illustrated in Fig. 1.3.

1.3.1 Approach

The microcontroller senses the inputs from a sensor that is
used to detect what’s on the screen, analyses the data using
a logic that has been programmed into it and sends appro-
priate commands to the touch circuitry.

Refer to the Electronics chapter in the book to learn in
detail about how the sensing and touching circuits work.

14 1. OVERVIEW

Figure 1.3: The image depicts the block diagram for a typical
electronic circuit that can solve a game on the mobile

1.3.2 Advantages of this approach

• It’s very fast unlike the previous approach. This speed
is very important for solving many games.

1.3.3 Disadvantages of this approach

• External conditions such an ambient light might affect
the working of the circuits.

• Setting up the touch part of the circuit takes some time.

• It’s difficult to implement complex algorithms on Ar-
duino.

• Circuit required to simulate swipe is complicated and
involves mechanical parts.

1.4. USING ELECTRONICS AND IMAGE PROCESSING15

Figure 1.4: The image depicts the connection between the
computer, microcontroller and the phone for game automa-
tion.

1.3.4 Games which can be solved

’Piano Tiles’ and ’Ready Steady Bang’ can be solved using
this method because in these we just need to detect a inten-
sity change on a small part of the screen using sensors and
then simulate touch using electronic circuits.

1.4 Using Electronics and Image Processing

In this method we will be using the concepts of electronics
and image processing together to automate the game. This
helps us get over the problem we had which Approach 1 that
it’s slow. The concepts of image processing and electronics
which we are going to use here is discussed in the following
chapters.

1.4.1 Approach

We use a webcam which streams the video of the mobile
screen into the computer that performs image processing

16 1. OVERVIEW

to extract relevant features, generates the duration of touch
and sends it to the microcontroller which is used to simu-
late the touch on the phone screen using electronic circuitry.
Recognize that we are not using adb tool here which makes
this faster. This has been illustrated in Fig. 1.4.

For example, in the game ’Stick Hero’, our webcam will
capture the image of the screen and send it to the laptop
where we can detect the pillars and the distace between them
using image processing. Depending on the distance, we can
send the information to the Arduino to simulate a touch for
a specified time.

1.4.2 Advantages of this approach

• This method can be used to solve real time games like
’Flappy Bird’.

• This is faster than adb tool, even though not as fast as
just using electornic circuits.

1.4.3 Disadvantages of this approach

• Complicated.

• Since external lighting influences the image captured
by the webcam, we may have to change the algorithm
accordingly each time.

• Setting the touch part of circuit becomes difficult.

1.4.4 Games which can be solved

The Android game ’Flappy Bird’ can be solved using this ap-
proach because the games are real time bounded and quick
tap on the screen is required to play these games.

We can increase the speed of image processing in this
method by using libraries such as OpenCV or PIL instead
of MATLAB’s image processing toolbox. But let’s stick to
MATLAB in this book.

2

Image Processing

Image processing is rapidly growing field with a wide range
of applications. Have you seen Facebook auto detect the
faces of people in images you upload? That’s image pro-
cessing. Have you seen various filters that can be applied
on an image in Instagram? That’s image processing.

Image processing is also used in medical diagnosis, char-
acter recognition, robotic vision, emotion detection, etc., Im-
age processing is a huge field and it’s hard to cover every-
thing in the book. So, in this chapter we cover the basics of
image processing which is enough to automate various ba-
sic mobile games. We use MATLAB for implementing most
of the image processing algorithms in this book but feel free
to use any other software/package.

In this chapter, we will start by covering the basics of
what an image is. Then, we show the various commands
that are used in MATLAB and their outputs. We will also
cover some important concepts of image processing used in
game automation with the help of code.

2.1 What is an Image?

In this section, we learn what is an image and what does it
consists of.

17

18 2. IMAGE PROCESSING

Figure 2.1: (a) The image of lena, (b) Image of lena zoomed
in

2.1.1 Basics

Below is the image of Lena which we use often in image pro-
cessing. New algorithms are experimented on this image
as it consists of diverse chunks like- curly hair, plain back-
ground, human face, etc.,

When you zoom very closely into the image, you will
start to realize that the image is made up of discrete squares
as shown in Fig. 2.1(b). Each of the discrete square have
their own color. These discrete sqares are called picture ele-
ments, or in short pixels.

Every image is created similarly by a two dimensional
array of discrete square which have specific colors. These
small discrete squares (or blocks) come together to form a
bigger image. The image in Fig. 2.1(a) has a high reso-
lution (512x512) and hence you are unable to see the dis-
crete square with your eye directly. There are so many small
blocks because of which our eye renders the image to be con-
tinous.

2.2. TYPES OF IMAGES 19

2.1.2 Image Resolution

The resolution of the image is the number of blocks in each
of the directions in an image. It is represented by m x n when
m is the number of pixels in x direction and n is the number
of pixels in y direction.

For example, when I say the resolution of the image in
Fig. 2.1(a) is 512 x 512, I mean that the number of blocks in
x direction for the image is 512 and the number of blocks in
y direction for the image is 512. That is a total of 262,144
pixels.

Let me give you another example, maybe a more intu-
itive one. When your phone manufacturer says that the res-
olution of the camera is 5 mega pixels (5 MP), what he means
to say is that there will be a total of 5,000,000 pixels on the
image that you take. So, the resolutions in x and y directions
could be 2500 and 2000. So, the resolution of that image is
2500 x 2000.

2.2 Types of Images

The images are classified into three main categories which
are mentioned below.

• Binary Image

• Grayscale Image

• RGB Image

Let us discuss each one of them now.

2.2.1 Binary Image

In a binary image, each of the pixels are either black or white.
There is no other color as shown in Fig. 2.2.

Typically in a binary image, black is represented by the
value 0 and white is represented by the value 1. This way,
a binary image can be stored in a 2D matrix with just the
numbers 0 and 1 in it. Fig.2.3 is an example of the same.

20 2. IMAGE PROCESSING

Figure 2.2: Binary Image

Figure 2.3: How Binary Image is stored

2.2. TYPES OF IMAGES 21

Figure 2.4: Grayscale image color values

Figure 2.5: Grayscale Image

2.2.2 Grayscale Image

In a grayscale image, apart from having white and black;
you can also have various shades of gray. For an 8-bit grayscale
image, the value of each pixel varies from 0 to 255 where 0
represents pure black; 255 represents white; and all the val-
ues in between represent various shades of grey. The same
is depicted in the Fig. 2.4 for clear understanding.

The grayscale image is stored in a 2D matrix with the val-
ues of each element varying between 0 and 255. An example
of a grayscale image is shown Fig.2.5. The image of Lena in
grayscale is depicted in Fig. 2.6.

2.2.3 RGB image

RGB stands for red, green and blue. Before getting into what
an RGB image consists of, we have to understand how each
and every color can be represented.

22 2. IMAGE PROCESSING

Figure 2.6: Grayscale Image of Lena

Representation of colors

Each of the pixels is represented by a single color and every
color can be represented as a combination of three colors-
red, green and blue. For example, white is the presence of
all three colors: red, green and blue whereas black is the
absense of these colors.

Fig.2.7. is the image of the popular color pallete in Mi-
crosoft Paint. You can select any color in the box in the right
half of image. It’s corresponding red, green and blue values
are represented at the left bottom of the screen.

This is a 24-bit image, i.e., 8 bits in red, 8 bits in green
and 8 bits in blue. Because it is 8 bits- the value of each
color can vary between 0 and 255. 0 represents the absense
of the color and 255 represents the presence. In this image,
the color choosen has a value of red 255, green 128 and blue
64. It means the color has full red component, half green
component and quarter blue component.

RGB Image Matrix

By using the above concept, any color can be represented as
a combination of three colors- read, green and blue. Simi-
larly, any image can be represented as combination of three

2.3. IMAGE PROCESSING TECHNIQUES 23

Figure 2.7: Color palette

layers. This is depicted in the Fih.2.8.
If these images are stored in a matirx, the size with be

200 x 150 x 3 where 3 represents the three layers.

2.3 Image Processing Techniques

We will use MATLAB for learning image processing but feel
free to use other softwares if you have experience with them.
MATLAB is very easy to learn and use but it’s computation-
ally intensive and slow. So, if for an application you need
to process images faster, it’s better to shift to C++ or Python
and use image processing libraries such as OpenCV or PIL.

Now that you have understood the basics of what an im-
age is, watch the first five videos "Image Processing in MAT-
LAB" by The Motivated Engineer on YouTube1.

Now, let’s start learning various image processing tech-
niques and see them in action with the help of MATLAB
commands.

1https://www.youtube.com/playlist?list=
PLmcMMZCV897oO5k7pfz23XkzXnCdcKbvn

https://www.youtube.com/playlist?list=PLmcMMZCV897oO5k7pfz23XkzXnCdcKbvn
https://www.youtube.com/playlist?list=PLmcMMZCV897oO5k7pfz23XkzXnCdcKbvn

24 2. IMAGE PROCESSING

Figure 2.8: The three color layers of the image are shown on
the right in grayscale form

2.3.1 Basic Commands

Let’s start off by learning some basic commands in MAT-
LAB to read, display and perform some basic operations on
images such as crop, rotate and resize. To know more, or
read detailed documentation for any of the commands, visit
MATLAB help. You can use the following syntax for it.

1 doc command_name

imread

This command reads the image from a graphics file and stores
it in a variable in the matrix form. The syntax for the imread
operation is shown below.

1 % USAGE: varible_name = imread (’ f i l e _ l o c a t i o n ’)
a = imread (’ input . jpg ’)

2.3. IMAGE PROCESSING TECHNIQUES 25

Figure 2.9: Image stored in input.png

The above command will store an image named ’input.png’
into matrix form in the variable a. The image that we will be
working with is shown in the Fig. 2.9.

The size of matrix a is decided by the dimensions of the
image. Let us assume the size of ’object.png’ be 266 x 400,
then the matrix a will have 266 rows and 400 columns. If the
object is an RGB image, the size of a will be 266 x 400 x 3
where 3 represents the layers of red, green and blue.

Make sure that the image ’object.png’ is in your working
directory for the code to work.

imshow

This command is used to show the image that has been stored
in the matrix form.

% USAGE: imshow (varible_name)
2 imshow (a)

It will display the image stored in variable a in a new
window as shown in Fig. 2.10.

For displaying the image in a new window, you can use

% USAGE: varible_name = imcrop (image , [x1 y1 l w])
2 f igure , imshow (b)

26 2. IMAGE PROCESSING

Figure 2.10: The window that pops up with imshow

where figure command create a new empty window where
the image can be displayed. imtool is another function that
you can use for displaying an image.

imcrop

This command crops the image according to the specified
coordinates. The following syntax can be used to crop an
image from the index values (x1, y1) with the length l and
width w.

b = imcrop (a , [90 90 200 3 0 0]) ; % cropping image
2 imshow (b) % displaying r e s u l t i n g image

It will crop the image a into a 151 x 151 x 3 image and
store it in another variable b. You can use imshow to ver-
ify that the operation was performed correctly. The result is
shown in Fig. 2.11.

imresize

This command resizes an image according to the specified
scale, or to a specified size. Here’s the syntax for using im-

2.3. IMAGE PROCESSING TECHNIQUES 27

Figure 2.11: Cropped image

Figure 2.12: Resized images

resize.

% USAGE: variable_name = imres ize (image , s c a l e)
2 c = imres ize (a , 0 . 5) ; % r e s i z i n g the image to h a l f

f igure , imshow (c)
4

% USAGE: variable_name = imres ize (image , output_s ize)
6 d = imres ize (a , [150 1 5 0]) ; % r e s i z i n g image to give

dimensions
f igure , imshow (d)

The resulting images are shown in Fig. 2.12.

28 2. IMAGE PROCESSING

Figure 2.13: Image after rotation

imrotate

This command can be used to rotate the image by given an-
gle (in degrees) in a counterclockwise direction around its
center point. To rotate the image clockwise, specify a nega-
tive value for angle. imrotate makes the output image large
enough to contain the entire rotated image. Here’s the syn-
tax for doing the same.

1 % USAGE: variable_name = imrotate (image , degrees)
e = imrotate (a , 15) ; % r o t a t e 15 degree in clockwise

3 imshow (e)

By default, imrotate uses nearest neighbor interpolation,
setting the values of pixels in output image that are outside
the rotated image to 0 (zero). This is depicted in Fig. 2.13.

subplot

Creates axis in tiled positions. Whenever we need to display
two or more images in one window, we use subplot.

1 subplot (m, n , p)

2.3. IMAGE PROCESSING TECHNIQUES 29

Figure 2.14: Output window after using subplot

It divides the current figure into an ’m x n’ grid and
creates an axes for a subplot in the position specified by p.
MATLAB numbers its subplots by row, such that the first
subplot is the first column of the first row, the second sub-
plot is the second column of the first row, and so on. If the
axes already exists, then the subplot(m,n,p) makes the subplot
in position p the current axes. Here’s how it can be used.

1 subplot (2 , 2 , 1) , imshow (a)
subplot (2 , 2 , 2) , imshow (b)

3 subplot (2 , 2 , 3) , imshow (c)
subplot (2 , 2 , 4) , imshow (e)

subplot(2, 2, 1) will divide the figure into a 2 x 2 matrix.
’1’ is representing the position where the image a is going to
be displayed in the 4 positions.

30 2. IMAGE PROCESSING

Figure 2.15: Choosing the points on window that pops up
when you use impixel

2.3.2 Image Thresholding

Image thresholding is a simple way of detecting specific ob-
jects in the image. This technique converts RGB or grayscale
images into binary image that has the object of interest seper-
ated out. The binary image has the object of interest marked
in white and rest of the image in black (or vice-versa) de-
pending on how you threshold.

Choosing Threshold Values

The values for thresholding are choosen based upon the pixel
intensities of the objects of interest in the image. There are
multiple ways to look at these values.

One way is to use imshow(img) and use the pixel info tool
to see the RGB values of specific pixels. You can also use
imtool(img) and point the cursor at specific pixels to see the

2.3. IMAGE PROCESSING TECHNIQUES 31

RGB values at the bottom right of the window.
A better way to keep track of all these pixel values in an

image is by using the function impixel. It is used with the
following syntax.

%% Finding p i x e l values
2 values = impixel (img) ;

A new window pops up when the above command is
executed where you can click on the object at a specific pixel
and the RGB values of that pixel are stored in values. You
can keep clicking at multiple point in the region of interest so
that you have all the values stored in the variable values. You
can stop choosing by double clicking on one of the pixels.

And there you have the pixel values that you need to
threshold in the matrix values. When you finish selecting
pixels, impixel returns a m x 3 matrix of RGB values in the
supplied output argument. You can now look at the data
inside values and see what are the ranges of red, green and
blue intensity values in your image. Initialize the following
variables depending on that data: redMin, redMax, greenMin,
greenMax, blueMin, blueMax.

Here’s a sample of the values.

%% Choosing the p i x e l values
2 redMin = 2 0 0 ; redMax = 2 5 5 ;

greenMin = 1 7 0 ; greenMax = 2 5 5 ;
4 blueMin = 0 ; blueMax = 1 5 ;

Splitting an image into RGB channels

An image can be split into RGB channels in MATLAB by
using the following piece of code.

%% S p l i t t i n g i n t o channels
2 red = img (: , : , 1) ; % f i l t e r s f i r s t l a y e r

green = img (: , : , 2) ; % f i l t e r s second l a y e r
4 blue = img (: , : , 3) ; % f i l t e r s t h i r d l a y e r

32 2. IMAGE PROCESSING

Figure 2.16: Displaying the RGB layers of input.png

6 % Displaying the r e s u l t
f igure , subplot (1 , 3 , 1) , imshow (red)

8 subplot (1 , 3 , 2) , imshow (green)
subplot (1 , 3 , 3) , imshow (blue)

The output is shown below.

Thresholding in MATLAB

The required region or object must satisfy the condition that
it’s pixel values vary in the limits defined above. That can
be implemented in one line in MATLAB using the following
code.

1 %% Thresholding
out = red>=redMin & red<=redMax & green >=greenMin &

green <=greenMax & blue >=blueMin & blue <=blueMax ;
3 f igure , imshow (out)

out will be a binary image with required object marked
in white and others in black as shown in Fig. 2.17.

But understand that this code cannot be applied to all
images. It can be applied only when the object to be de-
tected is of the different color from the rest. In the image
that we are using, direct thresholding was not good enough
to detect the block perfectly. We how to do that using image
enhancement in the next section.

2.3. IMAGE PROCESSING TECHNIQUES 33

Figure 2.17: Image after thresholding

2.3.3 Image Enhancement

The above image thresholding algorithm might not always
work. Sometimes you will have to do some additional pro-
cessing before you can detect the location of the object and
that is what we will be learning now.

In this section, we will discuss the following morpho-
logical operations that you can perform on your obtained
binary image to get a more satisfactory image.

• Dilation

• Erosion

• Filling holes

• Removing small objects

Let us learn about each of them now. Please note that
the definitions provided here are over simplified for easier
understanding. If you want to learn more in detail, take a
course on Image Processing.

We will apply all these technique on the output we got
from the previous section. Note that the following image is
a zoomed version as it helps to see what’s happening more
clearly.

34 2. IMAGE PROCESSING

Figure 2.18: Close up of thresholded object

Figure 2.19: Image after dilation once

Dilation

Dilation is the process of expanding the shapes in the image.
It can also be used when the size of the shape in binary

image is smaller than the actual object. Dilation can help
make the shape size bigger. Here’s the syntax for dilation of
an image one time. The output is shown in Fig.2.19.

1 % D i l a t i n g the image once
out2 = bwmorph(out , ’ d i l a t e ’) ;

3 f igure , imshow (out2)

You can also dilate an image multiple times by using an
additional parameter as shown below. The output is shown

2.3. IMAGE PROCESSING TECHNIQUES 35

Figure 2.20: Image after dialtion multiple times

in Fig.2.20.

1 % D i l a t i n g the image ’n ’ t imes
n = 5 ;

3 out3 = bwmorph(out , ’ d i l a t e ’ , n) ;
f igure , imshow (out3)

The function imdilate can also be used for dilation. For
learning more, type doc imdilate in your MATLAB command
window.

Erosion

Erosion is the process of thining the object from the edges in
the image. It can be used when the size of the binary image
is larger than the actual object. Erosion can help make the
object size smaller and filter out small object that have been
unintentionally detected. Here’s the syntax for erosion of an
image one time. The output is shown in Fig.2.21.

% Eroding the image once
2 out2 = bwmorph(out , ’ erode ’) ;

f igure , imshow (out2)

36 2. IMAGE PROCESSING

Figure 2.21: Image after erosion once

Figure 2.22: Image after erosion multiple times

You can also erode an image multiple times by using an
additional parameter as shown below. The output is shown
in Fig.2.22.

1 % Eroding the image ’n ’ t imes
n = 5 ;

3 out3 = bwmorph(out , ’ erode ’ , n) ;
f igure , imshow (out3)

Filling holes

Holes are black pixels in the image which are completely
covered in all directions by white pixels. In other words,

2.3. IMAGE PROCESSING TECHNIQUES 37

Figure 2.23: Image after holes filled

hole is a set of pixels that cannot be reached by filling back-
ground from edge of image. The imfill function can be used
to fill the holes. An example of how it can be used is shown
below. The output is shown in Fig.2.23.

out2 = i m f i l l (out , ’ holes ’) ; % F i l l i n g holes
2 f igure , imshow (out2)

Removing small objects

Shapes in an image can be removed by using the following
function. The area of the shape less than which have to be
eliminated must be mentioned as one of the parameters for
the function. The output is shown in Fig.2.24.

% remove o b j e c t with area l e s s than 100
2 area = 1 0 0 ;

out2 = bwareaopen (out , area) ;
4 f igure , imshow (out2)

Once we have enhanced the image properly, we will have
only the object(s) of interest left in the image. We will learn
how to find the properties of these shapes in the next section.

38 2. IMAGE PROCESSING

Figure 2.24: Image after opening

2.3.4 Region Properties Extraction

In this section, we will learn how we can use the function
‘regionprops‘ in MATLAB to detect various properties of ob-
jects that can be detected using steps in the previous sec-
tions. The input to the ‘regionprops‘ function is a binary
image, with the object marked in white and the background
marked in black.

This command creates a struct variable in which it stores
various properties for every region. The default properties
are Area, Centroid, BoundingBox. The function also allows ex-
tracting a wide range of other properties that can be found
in the MATLAB help or by typing in doc regionprops in the
MATLAB command window.

Here’s the syntax for using the function regionprops.

% Code to e x t r a c t d e f a u l t p r o p e r t i e s of o b j e c t s
2 S t a t s = regionprops (out2) ;

4 % Code to e x t r a c t only c e n t r o i d s of o b j e c t s
S t a t s = regionprops (out2 , ’ Centroid ’) ;

2.3. IMAGE PROCESSING TECHNIQUES 39

Figure 2.25: Image showing where you can click to add
break points

2.3.5 Debugging in MATLAB

In this section, we will learn the basics of debugging and
how we can debug in MATLAB.

What is Debugging?

Debugging is the process of stopping the execution of the
code at a specific point so that you can analyse the state of
the code there to find the mistakes. This is a very important
feature of MATLAB that you have to understand and helps
you save a lot of time while you have to find the mistake in
your code. When the code stops the execution at a specific
point, you can look at the values of all the variables there
and see if everything’s good.

Breakpoints

You can click on the margin left to the line numbers in MAT-
LAB to create a breakpoint. The breakpoint is the point where
you code stops executing.

You can see various features in MATLAB for debugging
once you are at a break point.

Let’s understand how each of these work now.

40 2. IMAGE PROCESSING

Figure 2.26: Debug control menu

Continue, as is name suggests, is used for continuing the
execution of the code until the next breakpoint occurs.
Step takes you to the next step of the code.
Step in takes you into the function in the line that you are
executing now.
Step out bring you out of a function that you may have got
into using step in.

3

Electronics

In this chapter, we will cover the a brief introduction to elec-
tronics and an overview of the microcontroller Arduino and
how it can be used to solve the mobile games. We will also
learn various sensors that can used to detect what’s on the
screen and different ways of automating the touch.

We used Arduino in this book for the projects because it
is easy to setup and use. Feel free to use the microcontroller
that you are comfortable with.

3.1 Basic Electronics

Electronics deals with the use of circuits that involve various
electrical components. Everything from the clock you see to
find time to the smartphone in your hand connecting you to
your friends every second are the applications of it. In this
section, we will give a brief overview of the electronics that
we need to get started with working on the book.

If you are a beginner, this video series on YouTube is a
great way to start- Building Electronic Circuits1

It starts off by giving you an overview of the basics of
the electronic components generally used and teaches you

1https://www.youtube.com/playlist?list=
PLmcMMZCV897om7Wuqz882Jdp9lGj9HYHs

41

https://www.youtube.com/playlist?list=PLmcMMZCV897om7Wuqz882Jdp9lGj9HYHs
https://www.youtube.com/playlist?list=PLmcMMZCV897om7Wuqz882Jdp9lGj9HYHs

42 3. ELECTRONICS

Figure 3.1: Voltage divider circuit

how to work on some cool projects such as infra red sensors
and wearable circuits. Watching and practicing the circuits
in the first six videos in this series would give you a decent
level of understanding to continue reading the sections be-
low. These videos are optional to watch for people who have
worked on electronic circuits before.

3.1.1 Voltage Divider Circuit

A voltage divider circuit is commonly used in many elec-
tronic circuits for a wide range of applications including ad-
justing level of signal, measurement of voltages, etc. It is
used in multimeter and wheatstone bridge. It produces an
output voltage which is a fraction of the input voltage. The
value of the output voltage depends on the values of the re-
sistors used. We will use this circuit in a following section
on sensors.

The output voltage of the above circuit can be calculated
by the following equation. Read about ohm’s law and work
on some examples to know where we get the equation from.

Vout =
(

R2
R1+R2

)
Vin

3.2. ARDUINO 43

Figure 3.2:

Next, let us learn about how to use microcontrollers in
building electronic circuits, specifically, Arduino.

3.2 Arduino

Arduino is an open-source, easy to use platform used for
various electronics projects. It has a physical programmable
circuit board. The capabilities of Arduino depends on the
capabilities of the the microcontroller it’s holding.

There are various types of Arduino’s available in the mar-
ket and the most popular one is called Arduino UNO. For
instance, Arduino UNO uses ATMega328P and hence vari-
ous specs depend on it.

In most applications, Arduino reads the inputs from the
sensors, and takes action depending on the logic that has
been programmed into it.

Jeremy Blum’s Arduino tutorials2 on the YouTube are

2https://www.youtube.com/playlist?list=
PLV009FNOX7Tf-XSyghg2vrSYXw1QcCHaX

https://www.youtube.com/playlist?list=PLV009FNOX7Tf-XSyghg2vrSYXw1QcCHaX
https://www.youtube.com/playlist?list=PLV009FNOX7Tf-XSyghg2vrSYXw1QcCHaX

44 3. ELECTRONICS

one of the best out there, watch the first three videos to get
the basic understanding of Arduino.

3.2.1 Hardware

We will be talking mostly about Arduino UNO here. It has
20 I/O pins which means that these pins can be used to ei-
ther take digital inputs, or provide digital outputs.

The pins are labelled as D0, D1, D2, ..., D13 and A0, A1,
A2, ..., A5 which makes a total of 20 pins. The speciality of
the pins labelled with A is that apart from digital input and
output, they can also take analog inputs from sensors.

Values from various sensors can be read at the input pins
and outputs can be activated accordingly.

3.2.2 Software

Arduino comes with a easy-to-use software that is available
on their website3. It can be used to write code, compile it
and then upload it onto the Arduino that can be used in your
projects.

Here’s how the code is organised in Arduino.

1 // i n i t i a l i z a t i o n s here
void setup () {

3 // setup code here
}

5 void loop () {
// loop code here

7 }

The setup() function only runs once and that is at the
start of the program with the initializations above. The loop()
runs continously after the setup is executed once. This code
in the loop() function continues to run till the board is reset
again.

3http://arduino.cc

http://arduino.cc

3.3. SENSORS FOR AUTOMATING GAMES 45

Let us look at a sample code and try to understand how
it works.

1 # def ine LED_PIN 13

3 void setup () {
pinMode (LED_PIN , OUTPUT) ; // Enable pin 13 f o r
d i g i t a l output

5 }

7 void loop () {
d i g i t a l W r i t e (LED_PIN , HIGH) ; // Turn on the LED

9 delay (1 0 0 0) ; // Wait one second (1000 m i l l i s e c)
d i g i t a l W r i t e (LED_PIN , LOW) ; // Turn o f f the LED

11 delay (1 0 0 0) ; // Wait one second
}

The LED_PIN variable is set to a value of 13. In the
setup() function, the pin D13 is set as a digital output pin
by using the pinMode function.

In loop() function, the output state of the digital pin can
be changed by setting it to high or low using the digitalWrite
function. A small time wait is executed by using the delay()
function. If an LED is connected to the output pin of the
Arduino, this code will blink the LED with a time period of
two seconds.

Next, let’s understand how various sensors can be con-
nected and used with Arduino.

3.3 Sensors for Automating Games

This section lists the various electronic sensors that can be
used to detect the differences on the phone screen. The com-
mon and main idea for all of these sensors is that it senses
the light and convert it into an understandable format. For
example, LDR converts the change in light intensity that is
falling on top of it into change in resistance.

46 3. ELECTRONICS

Figure 3.3: Light Dependent Resistor

3.3.1 Light Dependent Resistor(LDR)

An LDR is commonly used for wide range of applications
because of it provides decently accurate information of the
external lighting and at the same time economical. It is ba-
sically a light controlled resistor- which means that the re-
sistance across its terminals changes according to the light
incident on it. This can be used in projects where you want
to sense the lighting in the surrondings. One of its common
applications is to be used to turn on lights automatically in
the evening. A video tutorial on how you can build such a
circuit is here4.

Working

It works on the principle of photo conductivity. When light
is incident on top of a LDR, the electrons and holes are seperated-
hence the conductivity increases i.e., resistivity decreases.
When the light is not incident, they are very few freely mov-
ing holes and electrons- so the conductivity is less i.e., the
resistivity is high.

4https://youtu.be/_uglvulpofQ

https://youtu.be/_uglvulpofQ

3.3. SENSORS FOR AUTOMATING GAMES 47

Figure 3.4: Voltage divider circuit

Circuit

Assume that LDR is connected at R1 and R2 is a resistor. As
discussed in the previous chapter, the LDR can be used in
a voltage divider circuit to convert this change in resistance
because of the external light to change in voltage. We are
doing this because the microcontroller can only detect the
change in voltage.

This is how the LDR must be connected to the Arduino.
This circuit diagram has been created using Fritzing5.

Source code for using LDR with Arduino

This is the code that you can use in Arduino to read the val-
ues from the LDR with the appropriate circuit. We will dis-
play the values returned by the LDR on the serial monitor
so that we can observe the changes in the value returned in
real time.

Serial communication is used for data exchange between
devices through the serial port. Let’s setup it up here be-
tween the computer and Arduino.

void setup ()

5http://fritzing.org/

http://fritzing.org/

48 3. ELECTRONICS

Figure 3.5: Circuit to connect LDR to Arduino

2 {
// i n i t i a l i z e s e r i a l communications a t 9600 bps :

4 S e r i a l . begin (9 6 0 0) ;
}

Let’s connect the LDR input to A0 pin on Arduino.

1 void loop ()
{

3 // reading the value from sensor and s t o r i n g i t
in a v a r i a b l e
sensorValue = analogRead (A0) ;

5

// p r i n t the output on s e r i a l monitor
7 S e r i a l . p r i n t (" Sensor Value = ") ;

S e r i a l . p r i n t l n (sensorValue) ;
9

// use a delay to see values c l e a r l y
11 delay (2 0) ;

}

3.3. SENSORS FOR AUTOMATING GAMES 49

Figure 3.6: Connecting sensors to Arduino

Sensor placement on screen

Here’s how the LDR can be placed on the top of the screen.
The output voltage from the LDR circuit changes depend-

ing on the screen color (either white or black). We have to
choose a value in between both of them with we call the
threshold to differentiate the colors. This threshold value
can be found by watching the values of white and black on
the serial monitor.

Once the sensor threshold value is found, we can use the
following code to perform tasks accordingly.

void setup ()
2 {

thresholdValue = 5 0 0 ; // obtained from observat ion
of s e r i a l monitor

4 }

6 void loop ()
{

8 // reading the value from sensor and s t o r i n g i t
in a v a r i a b l e
sensorValue = analogRead (A0) ;

50 3. ELECTRONICS

Figure 3.7: Shielding sensors

10

i f (sensorValue > thresholdValue)
12 {

// perform task when screen white
14 }

e l s e
16 {

// perform task when screen dark
18 }

20 delay (2 0) ;
}

Sensor protection from ambient light

This threshold value could change depending on the ambi-
ent light in the room. So, we use a cover (or shield) for the
LDR to avoid that light to fall on the screen. Shielding is
optional but we suggest you to do that. This will make the
values that LDR returns consistent irrespective of the exter-
nal light. We make sure that the color of the shield is dark so
that it would block more light.

An LDR can be used to differentiate between bright and

3.4. TOUCH SIMULATION 51

dark regions on the screen. If you have a dark region, the
LDR has high resistance and vice-versa. This is appropri-
ately reflected in the values sensed by the microcontroller so
that appropriate action can be taken.

This is used in the games Piano Tiles and Ready Steady
Bang because the primary concept in this games is the iden-
tify the difference in intensities of light on screen.

3.3.2 RGB Sensors

Instead of an LDR, we can also use an RGB sensor to dif-
ferentiate colors on the screen. The additional advantage of
the RGB sensor from the LDR is that, it can know the exact
color on the screen unlike LDR with which you can find the
brightness of the color coming from the screen.

An RGB sensor can clearly differentiate between blue
and green, whereas the same would be hard for an LDR to
do.

3.4 Touch Simulation

Simulating touch is one of the critical parts of any game.
There are multiple ways in which we can simulate the touch.

3.4.1 Mechanical

The touch can be simulated by a mechanical system consist-
ing of a stylus connected to servo motor. A typical servo mo-
tor is a rotatory actuator that allows precise control of angle.
The stylus must be connected to the servo in such a way that
when the servo rotates, the stylus hits the screen.

This is the code that you can use to control the touch in
this case. Let us assume that the mechanical arrangement
is adjusted in such a way that the angle when the stylus
touches the screen is 0 degrees and that the stylus doesn’t
touch the screen for 30 degrees.

52 3. ELECTRONICS

1 // import the servo motor l i b r a r y
include <Servo . h>

3

Servo myservo ; // c r e a t e servo o b j e c t to c o n t r o l a
servo

5

void setup ()
7 {

myservo . a t t a c h (9) ; // a t t a c h e s the servo on pin 9
to the servo o b j e c t

9 }

11 void loop ()
{

13 // below are the angles f o r touching
// 0 − touch , 30 − no touch

15

myservo . wri te (3 0) ; // simulate no touch
17 delay (1 0 0 0) ;

19 myservo . wri te (0) ; // simulate touch
delay (1 0 0 0) ;

21 }

But the problem with this method is that it is relatively
slow. It is constrained by the speed of servo movement. To
overcome this problem, we can use one of the following two
ways.

3.4.2 Using Relay

This and the next method can only work on capacitive touch
screens. For this we have to understand how they work.
The electrodes apply a low voltage to the conductive layer
creating a uniform electrostatic field. When a finger hits the
screen a tiny electrical charge is transferred to the finger to
complete the circuit creating a voltage drop at that point on
the screen. The location of this voltage drop is recorded by
the controller. This is shown in Fig. 3.86.

6Credit: The Curious Engineer (published with permission)

https://www.youtube.com/user/c0defap

3.4. TOUCH SIMULATION 53

Figure 3.8: Depiction of how touch screen works

Figure 3.9: Relay internals

We are going to use this concept, except that in the place
of a finger, we use the ground pin on the arduino to trans-
fer the charge on the screen. To have more surface area on
the display of the screen, we use a coin. Relays are directly
connected to the output pin of the Arduino. As shown in the
Fig. 3.9, it is equivalent to a touch if the voltage given is high
as there is a path for the current to flow to the ground. It is
equivalent to not touching, if the voltage given is low.

Fig.3.10 shows how you have to connect the relay in a
circuit to simulate touch.

Here’s the code to simulate touch and no touch alterna-
tively with a time period of two seconds.

54 3. ELECTRONICS

Figure 3.10: Connecting relay to Arduino

1 void setup ()
{

3 pinMode (4 , OUTPUT) ;
}

5

void loop ()
7 {

// below are the values f o r touching
9

d i g i t a l W r i t e (4 , HIGH) ; // simulate no touch
11 delay (1 0 0 0) ;

13 d i g i t a l W r i t e (4 , LOW) ; // simulate touch
delay (1 0 0 0) ;

15 }

Touch simulation on screen

Here’s how the touch circuit can be placed on the top of the
screen.

3.4. TOUCH SIMULATION 55

Figure 3.11: Touch simulation using Arduino

We should also make sure that there is enough contact
between the wire from the output of the relay and the sur-
face of the screen. Hence, we can use a coin or aluminium
foil for this purpose.

Debugging

I must concede that getting the touch to work at first it hard.
While using this circuit, try to have your phone in developer
mode and tuen on the setting that says show touches and
pointer location, so that you exactly understand when and
where the screen is being touched.

If you circuit doesn’t work directly, it’s probably because
the ground of your mobile and that of the circuit do not
match. For overcoming this diffculty, you can try the fol-
lowing: make sure your circuit is not placed on an iron con-
ductor, change the material used to increase the surface area
of touch, try to plug both your circuit and the mobile into
USB ports from the same computer, etc.,

56 3. ELECTRONICS

3.4.3 Using Transistor

This method can work faster than a relay too. You have to
use a transistor in place of a relay for switching between
open circuit and ground. The code would be the same as
above.

4

Solving Games

In this chapter, we cover specific examples of the concepts
that we have learned earlier in this book. The chapter is
split into sections depending on the approach that is used
to solve the games. By the end of this chapter, you will be
able to get enough insights into game automation so that
you can start tackling new games. Note that the codes in
this chapter might not work directly as you run them on
your phone. The codes might have been written for a differ-
ent phone screen resolution and you must make appropriate
changes to the code before you run it.

4.1 3D Bowling

Game Description

In this game1, the task of this player is to knock out as many
pins as possible in a throw. You can throw the ball by swip-
ing across the screen.
Difficulty Level: Easy

You can see a demo video of the working of this game at
the following link2.

1https://play.google.com/store/apps/details?id=com.
threed.bowling

2https://youtu.be/fvfRw3w-E4s

57

https://play.google.com/store/apps/details?id=com.threed.bowling
https://play.google.com/store/apps/details?id=com.threed.bowling
https://youtu.be/fvfRw3w-E4s

58 4. SOLVING GAMES

Figure 4.1: 3D bowling (a) on play store (b) gameplay

Overview

It’s observed that a swipe across the center of the screen is
the best way to drop maximum pins. That’s what we are
going to do with the code.

Block Diagram

4.1. 3D BOWLING 59

Tutorial

Here’s the step-wise tutorial to automate the game. The
source code is avaiable here3.

Step 1: Using ADB Tool to capture screenshot

The following command instantaneously takes the screen-
shot of the connected device and stores it in the SD card fol-
lowing the specified path.

1 system (’ adb s h e l l screencap −p /sdcard/screen . png ’) ;

The following command pulls it from the SD card of the
android device into the working system following the path
specified.

1 system (’ adb pul l /sdcard/screen . png ’) ;

The pulled image is stored in the form of a matrix of pixel
values by the MATLAB.

Step 2: Choosing Points on the image

The pulled image is read and the two sets of coordinates
are chosen such that they lie on the vertical axis that passes
through the centre of the screen.

1 a = imread (’ screen . png ’) ;
imshow (a)

Step 3: Swipe across the screen

A swipe across the screen can be simulated by using the fol-
lowing command.

3https://github.com/GameAutomators/3D-Bowling

https://github.com/GameAutomators/3D-Bowling

60 4. SOLVING GAMES

system (’ adb s h e l l input swipe x1 y1 x2 y2 ’) ;

where (x1,y1) and (x2,y2) are the cooridinates that were cho-
sen.

Note: The swipe must be in the upward direction.

Step 4: Wait

We use a delay of 2 seconds for waiting for the animation of
the swipe to be completed and ready for next throw. These
two steps can be used in a loop to complete the whole game.

1 pause (2) ;

Conclusions

Ideally, the algorithm should be able to win each and ev-
ery time because it’s playing the best move every time. But
there is a random element that has been programmed into
the game because of which the ideal move doesn’t always
work.

This is an inefficient way to solve the game. A better
method would be to choose the swipe direction depending
on the location of the balls present on the screen.

4.2. FIND THE DIFFERENCES 61

Figure 4.2: Find the difference (a) on play store (b) gameplay

4.2 Find the differences

Game Description

The game4 has two images with ten minute differences. The
aim of the player is to find the ten differences.
Difficulty Level: Easy

You can see a demo video of the working of this game at
the following link5.

Overview

The image is divided into two parts and the differences are
detected by using the processing the image. The differences
are then made significant using an image enhancement and
the final ten differences are obtained. Then ADB Tool library
is used to simulate the touch on the found differences.

4https://play.google.com/store/apps/details?id=com.
ivanovandapps.ftdiaa3

5https://youtu.be/vOTyJVKrqfk

https://play.google.com/store/apps/details?id=com.ivanovandapps.ftdiaa3
https://play.google.com/store/apps/details?id=com.ivanovandapps.ftdiaa3
https://youtu.be/vOTyJVKrqfk

62 4. SOLVING GAMES

Block Diagram

Tutorial

Here’s the step-wise tutorial to automate the game. The
source code is avaiable here6.

Step 1: Using ADB Tool to capture screenshot

The following command instantaneously takes the screen-
shot of the connected device and stores it in the SD card fol-
lowing the specified path.

1 system (’ adb s h e l l screencap −p /sdcard/screen . png ’) ;

The following command pulls it from the SD card of the
android device into the working system following the path
specified.

1 system (’ adb pul l /sdcard/screen . png ’) ;

The pulled image is stored in the form of a matrix of pixel
values by the MATLAB.

6https://github.com/GameAutomators/
Find-The-Difference

https://github.com/GameAutomators/Find-The-Difference
https://github.com/GameAutomators/Find-The-Difference

4.2. FIND THE DIFFERENCES 63

Step 2: Image processing and enhancement

Both the images are separated and stored in two different
matrices. The matrices are subtracted to get the difference
matrix.

The difference matrix is converted into a binary image
and the differences are made more significant by increasing
the size of the differences by dilation. The centroids of the
ten differences are found.

Step 3: Using ADB Tool to simulate touch

The following command taps at the point on the screen with
the co-ordinates mentioned as (x, y). This is used to simulate
touch at the centroid of the differences.

1 system (’ adb s h e l l input tap x y ’) ;

where (x1,y1) and (x2,y2) are the cooridinates that were cho-
sen.

Conclusions

This way, the computer solves the game very quickly, the
speed at which humans can only dream off. This algorithm
is robust and work for a few other find the difference games
on the play store.

64 4. SOLVING GAMES

Figure 4.3: Sudoku (a) grid (b) gameplay

4.3 Sudoku

Game Description

This is a single player game7. The player has to solve sudoku
mazes (9x9 grid). The objective of sudoku is to enter a digit
from 1 through 9 in each cell, in such a way that:

• Each horizontal row (shown in pink) contains each digit
exactly once.

• Each vertical column (shown in yellow) contains each
digit exactly once.

• Each subgrid or region (shown in green) contains each
digit exactly once.

Difficulty Level: Moderate

7https://play.google.com/store/apps/details?id=le.
lenovo.sudoku

https://play.google.com/store/apps/details?id=le.lenovo.sudoku
https://play.google.com/store/apps/details?id=le.lenovo.sudoku

4.3. SUDOKU 65

Overview

First, using Image Processing all the numbers are recognized
with their locations. Using algorithm, sudoku is solved and
the numbers are maked in concerned box using adb tool.

Block Diagram

Tutorial

Here’s the step-wise tutorial to automate the game. The
source code is avaiable here8.

Step 1: Using ADB Tool to capture screenshot

The following command instantaneously takes the screen-
shot of the connected device and stores it in the SD card fol-
lowing the specified path.

1 system (’ adb s h e l l screencap −p /sdcard/screen . png ’) ;

The following command pulls it from the SD card of the
android device into the working system following the path
specified.

8https://github.com/GameAutomators/Sudoku-Game

https://github.com/GameAutomators/Sudoku-Game

66 4. SOLVING GAMES

1 system (’ adb pul l /sdcard/screen . png ’) ;

The pulled image is stored in the form of a matrix of pixel
values by the MATLAB.

Step 2: Image processing

Once the screenshot is obtained, smallest unit box is been
croped out for recognization of number on it, using OCR
(Optical Character Recognition). Recognized number is been
stored in 9 x 9 matrix.

1 a = rgb2gray (cimg) ;
r e s u l t s = ocr (a , ’ TextLayout ’ , ’ Block ’) ;

3 rs2 = ocr (a , ’ TextLayout ’ , ’Word ’) ;

5 i f (isempty (r e s u l t s . Words))
A(i , j) =0 ;

7 e l s e
A(i , j) = s tr2double (r e s u l t s . Words) ;

9 end

11 % bcoz ocr with block option i s not d e t e c t i n g ’8 ’

13 i f (8 == str2double (rs2 . Words))
A(i , j) = 8 ;

15 end ;

Step 3: Algorithm

The following command taps at the point on the screen with
the co-ordinates mentioned as (x, y). This is used to simulate
touch at the centroid of the differences.

1 Find row , c o l of an unassigned c e l l
I f there i s none , re turn true

3 For d i g i t s from 1 to 9
a) I f there i s no c o n f l i c t f o r d i g i t a t row , c o l

4.3. SUDOKU 67

5 ass ign d i g i t to row , c o l and r e c u r s i v e l y t r y
f i l l in r e s t of grid
b) I f recurs ion s u c c e s s f u l , re turn true

7 c) Else , remove d i g i t and t r y another
I f a l l d i g i t s have been t r i e d and nothing worked ,

re turn f a l s e

The algorithm checks all the possible ways using back-
track and tries to solve it under given rules and solved ma-
trix is returned. The code is written in python. Tt takes com-
mand line string input of length 81 and return string output
of same length using following commands.

% s i s input s t r i n g .
2

cmd = ’ python sudoku . py ’ ;
4 [s ta tus , out] = system ([cmd s]) ;

Step 4: Using ADB Tool to simulate touch

The following command taps at the point on the screen with
the co-ordinates mentioned as (x, y) and then tap on that
specific number which is to be put there from bottom of
screen. This is used to simulate touch at the appropriate
points where we want to place the number.

system (’ adb s h e l l input tap x y ’) ;

Algorithm Complexity

The Time complexity for sudoku solver written is O(nb) where
n -> no. of possibilty of numbers for each cell i,e 9 and b ->
no. of blank cell. The Space Complexity is Size of Sudoku
and O(nb) for recursive call stack.

68 4. SOLVING GAMES

This can be seen be working backwards from only a sin-
gle blank. If there is only one blank, then it have n possi-
bilities that it must work through in the worst case. If there
are two blanks, then it must work through n possibilities for
the first blank and n possibilities for the second blank for
each of the possibilities for the first blank. If there are three
blanks, then you must work through n possibilities for the
first blank. Each of those possibilities will yield a puzzle
with two blanks that has n2 possibilities.

This algorithm performs a depth-first search through the
possible solutions. Each level of the graph represents the
choices for a single square. The depth of the graph is the
number of squares that need to be filled. With a branching
factor of n and a depth of m, finding a solution in the graph
has a worst-case performance of O(nm). So for hardest su-
doku this can take minutes or hours also.

4.4. UNBLOCK ME 69

Figure 4.4: Unblockme gameplay

4.4 Unblock Me

Game Description

This is a single player game9. The goal is to unblock the red
block out of the board by sliding the other blocks out of the
way, unblock it with the minimal moves.
Difficulty Level: Moderate

You can see a demo video of the working of this game at
this link10.

Overview

First, using image processing all the blocks alignment and
position is detected using image processing in MATLAB.
Using breadth first search algorithm, the game is solved and

9https://play.google.com/store/apps/details?id=com.
kiragames.unblockmefree

10https://youtu.be/_-aNdgeLc5w

https://play.google.com/store/apps/details?id=com.kiragames.unblockmefree
https://play.google.com/store/apps/details?id=com.kiragames.unblockmefree
https://youtu.be/_-aNdgeLc5w

70 4. SOLVING GAMES

blocks are moved to free the red block. The swipes on the
screen are simulated using adb tool.

Block Diagram

Tutorial

Here’s the step-wise tutorial to automate the game. The
source code is avaiable here11.

Step 1: Using ADB Tool to capture screenshot

The following command instantaneously takes the screen-
shot of the connected device and stores it in the SD card fol-
lowing the specified path.

1 system (’ adb s h e l l screencap −p /sdcard/screen . png ’) ;

The following command pulls it from the SD card of the
android device into the working system following the path
specified.

1 system (’ adb pul l /sdcard/screen . png ’) ;

11https://github.com/GameAutomators/UnblockMe-Game

https://github.com/GameAutomators/UnblockMe-Game

4.4. UNBLOCK ME 71

The pulled image is stored in the form of a matrix of pixel
values by the MATLAB.

Step 2: Image processing

After taking screenshot main part of game is cropped out.
Since Target block is of almost red color. So for specially that
block, red color thresholding is performed.

1 ImBW = Im (: , : , 2) < 1 0 ;
S = regionprops (ImBW, ’ BoundingBox ’ , ’ Area ’) ;

S.BoundingBox gives the x, y, width and height of tar-
get block. Now to detect other blocks position other color
thresholding is applied.

ImBW = Im (: , : , 1) > 2 2 0 ;
2 ImBW = i m f i l l (ImBW, ’ holes ’) ;

S = regionprops (ImBW, ’ BoundingBox ’ , ’ Area ’) ;
4

f o r in =1: numel (S)
6 i f S (in) . Area > 5000

% take only those block whose Area i s > 5000
s i n c e regionprops may d e t e c t small on . of
r e c t a n g l e s .

8 end
end

Step 3: Algorithm

The algorithm uses a simple breadth first search to find a
particular order of moves to free the red block.

1 Enqueue the current board
while Q not empty :

3 Dequeue a board and examine i t
can block escape ?

5 he can ! Ok
he cant ?

72 4. SOLVING GAMES

7 f o r each p o s s i b l e board t h a t can a r i s e out of
t h i s one

add board to END of Q

The code is written in C++. It takes command line string
input and return string have order of moves. Using follow-
ing commands in matlab we can run C++ program.

% s i s input s t r i n g .
2 cmd = ’ unblock . exe ’ ;

[s ta tus , out] = system ([cmd s]) ;

Step 4: Using ADB Tool to simulate touch

The following command swipes from the point (x1,y1) on
the screen to the point (x2, y2).

1 system ([’ adb s h e l l input swipe ’ ’ ’ num2str (x1) ’ ’
num2str (y1) ’ ’ num2str (x2) ’ ’ num2str (y2) ’ 100
’]) ;

Conclusions

This way, the game is automated. The code works for all
levels in the game. You can run the code in a loop to solve
all the 500 levels available in the game at once.

4.5. BANG 73

Figure 4.5: Bang (a) on playstore (b) gameplay

4.5 Bang

Game Description

The game12 has two players, one is system and the other is
player controlled. Both the players are allowed to shoot as
soon as the word ’BANG’ pops on the screen. The objective
of the game is to fire the opponent before he does by tap-
ping anywhere on the screen immediately after the ’BANG’
appears.

Difficulty Level: Moderate

You can see a demo video of the working of this game at
this link13.

12https://play.google.com/store/apps/details?id=com.
noodlecake.rsb

13https://youtu.be/riNjidXmOY4

https://play.google.com/store/apps/details?id=com.noodlecake.rsb
https://play.google.com/store/apps/details?id=com.noodlecake.rsb
https://youtu.be/riNjidXmOY4

74 4. SOLVING GAMES

Overview

As soon as the word ’BANG’ appears, the voltage output
from the pin where the LDR is connected decreases. When-
ever a drop in voltage is detected, the output pin is set to
LOW and thus the Relay output is activated.

Block Diagram

Circuit Diagram

4.5. BANG 75

Tutorial

Here’s the step-wise tutorial to automate the game. The
source code is avaiable here14.

Step 1: Sensor Placement

The LDR is fixed on the screen exactly where the ’BANG’ ap-
pears. When the ’BANG’ appears, the intensity of the light
from the screen being detected by the LDR decreases.

Step 2: Touch Simulation

The coin is placed on the screen and the output from the re-
lay is connected to it. When the relay output is grounded,
it simulates a touch on the screen and when it is open cir-
cuited, it withdraws the touch.

Step 3: Arduino Code

The algorithm uses a simple breadth first search to find a
particular order of moves to free the red block.

Initially, set the output pin HIGH.

1 d i g i t a l W r i t e (4 ,HIGH) ;

Read the input from the input pin, make a condition to
check whether the input is less than the threshold voltage
value (to be found experimentally) and check it with the con-
dition.

1 i n t a=analogRead (A0) ;
i f (a > Threshold value)

3 {
:

5 :
}

14https://github.com/GameAutomators/Bang

https://github.com/GameAutomators/Bang

76 4. SOLVING GAMES

Whenever it satisfies the condition, simulate the touch.

Conclusions

This way, the the circuit plays the game for us. Because the
reaction time of the circuit is very fast, it beats the computer
easily.

4.6. PIANO TILES 77

Figure 4.6: Piano tiles gameplay

4.6 Piano Tiles

Game Description

The game15 has tiles falling from the top of the screen. The
player is expected to tap of the tiles (which are black in color)
as quickly as possible without missing any.

Difficulty Level: Hard

You can see a demo video of the working of this game at
this link16.

15https://play.google.com/store/apps/details?id=com.
umonistudio.tile

16https://youtu.be/TQtS-OKW5Yo

https://play.google.com/store/apps/details?id=com.umonistudio.tile
https://play.google.com/store/apps/details?id=com.umonistudio.tile
https://youtu.be/TQtS-OKW5Yo

78 4. SOLVING GAMES

Overview

The color of the tile is sensed as black or white using LDR,
and touch is simulated at appropriate locations on the screen
using a logic programmed into the Arduino.

Block Diagram

Circuit Diagram

4.6. PIANO TILES 79

Tutorial

Here’s the step-wise tutorial to automate the game. The
source code is avaiable here17.

Step 1: Sensor Placement

The LDRs are placed like a grid at the locations where the
tiles will be falling through. When a black tile appears at the
LDRs, the output voltage changes appropriately that can be
observed on the Arduino.

Step 2: Touch Simulation

The coins are placed on the screen and the output from the
relay is connected to it. When the relay output is grounded,
it simulates a touch on the screen and when it is open cir-
cuited, it withdraws the touch. Appropriate coins are acti-
vated depending on the input from the LDRs.

Step 3: Arduino Code

Arduino reads the voltage drop across the LDR. Observe the
voltage voltages for black and white tiles, choose a suitable
threshold voltage say Vt. If voltage is less than the threshold
voltage, then there is larger the drop across LDR, larger the
resistance, which implies a Black tile and vice versa.

We have simulate touch accordingly. Tweak aroud with
the paramters delay1 and delay2 until you get satisfactory
results. The below code must be applied for each pair of
sensors and actuators (total of 4).

i n t delay1 = 8 0 ;
2 i n t delay2 = 7 5 ;

4 i f (analogRead (A5) <700)
{

6 d i g i t a l W r i t e (4 , HIGH) ;

17https://github.com/GameAutomators/Piano-Tiles

https://github.com/GameAutomators/Piano-Tiles

80 4. SOLVING GAMES

delay (delay2) ;
8 d i g i t a l W r i t e (4 , LOW) ;

delay (delay1) ;
10

}

Conclusions

This way, you can build a circuit that can play the game Pi-
ano Tiles. This is a very interesting concept that can be ap-
plied over a wide range of other games.

4.7. STICK HERO 81

4.7 Stick Hero

Game Description

In this game18, the player need to hold on the screen such
that the stick that the man is holding increase its length such
that the stick can be used to across the gap between two
black pillars.
Difficulty Level: Hard

You can see a demo video of the working of this game at
this link19.

Overview

The black pillars are detected using image processing and
the distance between them is calculated. This distance is
converted to time by using a linear equation. The screen is
touched by using the adb tool library.

Block Diagram

18https://play.google.com/store/apps/details?id=com.
ketchapp.stickhero

19https://youtu.be/Na2GrGcEe9Q

https://play.google.com/store/apps/details?id=com.ketchapp.stickhero
https://play.google.com/store/apps/details?id=com.ketchapp.stickhero
https://youtu.be/Na2GrGcEe9Q

82 4. SOLVING GAMES

Connection Diagram

Tutorial

Here’s the step-wise tutorial to automate the game. The
source code is avaiable here20.

Step 1: Setup everything

Set everything up as shown in the connection diagram.

Step 2: Detecting the black pillars

This is done by using Matlab. The image that is captured
from the IP Cam is processed and the locations of the black
pillars are determined. The distance between the black pil-
lars is calculated. and the corresponding data is sent to the
Arduino through serial communication.

Step 3: Determining the duration of the touch

Based on the distance found in the above step, the corre-
sponding data is sent to the Arduino through serial commu-

20https://github.com/GameAutomators/StickHero

https://github.com/GameAutomators/StickHero

4.7. STICK HERO 83

nication. The duration of the touch is adjusted such that the
stick exactly falls on the adjacent pillar.

Step 4: Simulating touch

Arduino reads the data from the serial port, and taps the
screen for that specific interval of time.

1 s = S e r i a l . read () ;
S e r i a l . p r i n t (s) ; % reading data from s e r i a l port

3 d i g i t a l W r i t e (7 ,HIGH) ;
delay_x (s∗3.28−0) ; // change m u l t i p l i c a t i o n
f a c t o r depending on your phone

5 d i g i t a l W r i t e (7 ,LOW) ;

Conclusions

This way, stick hero game can be automated. If setup prop-
erly, the system plays the game forever.

84 4. SOLVING GAMES

5

Contributing

This chapter details how you can contribute to the book.

5.1 Setting up to contribute

• Fork this repository GameAutomators/eBook-Source
to your profile account

• git clone https://github.com/<your github
username>/eBook-Source

• git remote add upstream https://github.com
/GameAutomators/eBook-Source

• git pull upstream master

5.2 Making a contribution

Note: Never make a contribution from your master branch.

• Before starting to write, ensure that you’ve done git
pull upstream master so that you’re up to date
with the main content.

• Checkout a new branch, this is like a copy of the con-
tent of the book so that you can make changes. git

85

86 5. CONTRIBUTING

checkout -b BranchNamewhere BranchName can
be anything depending on your contribution. For ex-
ample, if you’re writing an article on arduino you can
do git checkout -b MyArdunioDocument

• Once the content is written. Do git add <filename>
and git push origin BranchName

• Then headover to github and send a pull request.

• If you want to continue working on the same branch,
you can do that or ideally switch back to master by
doing git checkout master

• Pull back from upstream by doing step 1 before start-
ing to make the next contribution to the book.

We look forward to your contributions to the book.

	Overview
	Setting up adb tool
	Setup
	Basic Commands

	Using Image Processing
	Approach
	Advantages of this approach
	Disadvantages of this approach
	Games which can be solved

	Using Electronics
	Approach
	Advantages of this approach
	Disadvantages of this approach
	Games which can be solved

	Using Electronics and Image Processing
	Approach
	Advantages of this approach
	Disadvantages of this approach
	Games which can be solved

	Image Processing
	What is an Image?
	Basics
	Image Resolution

	Types of Images
	Binary Image
	Grayscale Image
	RGB image

	Image Processing Techniques
	Basic Commands
	Image Thresholding
	Image Enhancement
	Region Properties Extraction
	Debugging in MATLAB

	Electronics
	Basic Electronics
	Voltage Divider Circuit

	Arduino
	Hardware
	Software

	Sensors for Automating Games
	Light Dependent Resistor(LDR)
	RGB Sensors

	Touch Simulation
	Mechanical
	Using Relay
	Using Transistor

	Solving Games
	3D Bowling
	Find the differences
	Sudoku
	Unblock Me
	Bang
	Piano Tiles
	Stick Hero

	Contributing
	Setting up to contribute
	Making a contribution

